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Fig. 3. Micmstrip transmission-hne effective dielectric constant as a function
of the w/h ratio.

expression (?zin 4)/rr to account fortheedge correction for all values

of w/k larger than unity, his reasoning being that the actual edge

correction approaches this limiting value very rapidly as w/h ap-

proaches and exceeds unity. While attempting to define a crossover

point between the narrow- and wide-line cases, the present authors

considered the possibility that the edge-correction term for the wide-

Iine case should be a function of the w/h ratio. It was empirically

determined that if the edge-correction term in (2) was described in

the same fashion as the open-end correction developed in this short

paper (l), then adefinite crossover point existed between the narrow-

and wide-line approximations and the range of validity of the wide-

line approximation was extended. Values of w given by substituting

(1) into (2) areplottedin Fig.3 (curve c). Itisseenthatcurvec

closely approximates the narrow-line curve (curveb) for all values of

w/k. greater than 1.0 and less than about 3.5 and is asymptotic to

curve a for w/h>3.5. In order to test the validity of curve c, w was

measured using a resonant-ring technique for various w/h ratios

[6], [7]. Themeasured results areshown in Fig. 3andgood agree-

ment is exhibited with the modified expression forw/h>l (and with

curve b for w/h <3.5).

III. CONCLUSIONS

An empirically derived relation is reported which characterizes

the open-end effects in microstrip transmission lines on alumina sub-

strates, It is shown that thesame empirical equation maybe used to

describe the edge-correction term in Wheeler’s general expression for

thecharacteristic impedance of a sideline. Itis demonstrated that

with this modification, the wide-line approximation is valid over a

much larger range of w/h values and that a distinct crossover point

(w/k=l) exists between the narrow-line and wide-line approxima-

tions.

REFERENCES

[1] P. Troughton, ` D̀esign ofcompIex microstiip circuits bymeasurement andcom-
puter modeling,” P70c. Inst. Elm. Eng., vol. 118, no. 3/4, pp. 469–474, Mar./
Apr. 1971.

[2] A. Farrarand A. T. Adams, “Computat,ono flumpedm icrostripc apacitiesby
matrix methods—Rectangular sections and end effect, ”IEEi3 Trans. Mwr’owaue
Theory Tech. (Corresp.), vol. MTT-19, pp. 495-497, May 1971.

[3] L.S. Napoliand J. J. Hughes, “Foreshorteningof mlcrostrip open circuitson
alumina substrates,’’ IEEE Miwowave Theory Tech. (Corresp.), vol. MTT.19,
PP.559-561, June 1971.

[4] H. M. Altschuler and A. A. Oliner, “Discontinuitiesi nthecenterc onductorof
symmetric strip transmission lines, ” IEEE Trans. k’icrowane Theor’y Tech.,
vol. MTT-8, pp. 328–339, May 1960.

[5] H. A, Wheeler, ‘Transmission-line pmpertiesof parzlle lstripsseparate dbya
dielectric sheet, "IEEE Tranx. Mic?owavc Theory Tech., vol. MTT-13, PP. 172-
185, Mar. 1965.

[6] P. Troughton, liMeasurement techniques inmicrostrip, *Electron. Lett., pp. 25-
26, Jan. 23, 1969.

[7] O. P. Jain, “Astudyof dispersive behaviour inmicrostrip transmission lines, m
Faculty Eng., Carleton Univ., Ottawa, Ont., Canada, Tech. Rep., May 1971.

Extension of Digital Automatic Method for

Measuring the Permittivity of

Thin Dielectric Films

M. A. RZEPECKA AND M. A. K. HAMID

Abstract—The permittivity of thin dielectric films can be mea-

sured with good accuracy by employing a method recently reported

by the authors, whereby the microwave oscillator frequency is auto-

matically locked to the resonant frequency of the test cavity perturbed

by the sample, thus leading to a digital readout of the frequency.

However, the method is satisfactory only when the frequency shfit

caused by the presence of the test sample does not exceed the fre-

quency lock-in bandwidth. By employing a search oscillator, controlled

by the second harmonic of the modulation signal provided for the

frequency locking, thk limitation is removed, thus extending the

capability of the method to thicker films and/or larger permittivities R

INTRODUCTION

The permittivity of thin dielectric films can be measured with

considerable accuracy by a digital automatic method recently re-

ported by the authors [1]. The method utilizes the cavity perturba-

tion technique in which the frequency of the microwave oscillator is

locked to the resonant frequency of the test cavity in the absence and

presence of the test film. These frequencies can be measured very

accurately by a digital frequency counter. However, the ranges of

film thickness and material permittivity in which the method can be

employed are limited since they are determined by the lock-in band-

width of the frequency control loop. This bandwidth is directly re-

lated to the Q factor of the test cavity, which in turn should be large

enough to assure a high frequency-stabilization factor, thus permit-

ting only a small deviation of the oscillator frequency from the reso-

nant frequency of the cavity.

In many applications of this measurement method, as for instance

in the continuous monitoring of moisture content of sheet materials,

the range of the shift in resonance frequency exceeds the lock-in band-

width of the control loop. A method for extending the measuring

range is described in this short paper.

PRINCIPLE OF OPERATION

The complete circuit is shown in Fig. 1 where the additional parts

over the circuit previously reported in [1] are shown by dashed lines.

The principle of operation of the locking system is also described in

[1]. At the output of the linear homodyne detector there exists a

signa 1 at the modulation frequency which is used for the frequency

lock, as well as a signal at the second harmonic frequency. Basic signal

analysis [1 ]– [3 ] shows that the second harmonic signal is described

by the equation

. t’~fiq’
E(2wJ = –&I T(a) I sin a ~ — Gq+l,, (1)

C=l q(!l + 1)

where

~=e —argr

/ T(m) I = T(cM)

()
Co-rl.lo 2

1 + 4QL’ ——
coo

(2)
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Fig. 1. Block diagram of the resonant frequency shift measurement setuo with a
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1,
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I

II I
I

w’ (.% Cil
I

w“ Lu
—

o tPJ2/2 3nr.’/2 ,n2(3+;) 52,(1+;)

(
u—q

argr = arctan 2(1——
coo )

(3)

amplitude of subcarrier signal,

transmission coefficient of cavity at resonance,

cavity resonant frequency in radians,

microwave oscillator frequency in radians,

loaded Q factor of cavity,

=180–0; @ is the angle between carrier and subcm-rier

signals,

=EJE,,

amplitude of carrier signal,

‘p’{cOs[e-arctan2Q’r&)I— ———._ ,
‘P-arc’an2QLr5%

Legendre polynomials of order q and argument x,

special functions of modulation index w tabulated in [3]

aud listed for the first five terms in ‘rable I.

Since in practice?< 0.1, all the terms in the sum beyoud the first may

beneglected. Thus (I) reduces to

E,.
E(2wn) = —r–~ [ T(co) [mzsinza, (4)

In order to assure frequency lock by the signal at the first harmonic,

the angle @ between the carrier and subcarrier signals must have

specific values which depend on r and which are listed in [I]. The

proper angle forthefrequency lock isdenoted by do. Thechangeiu

the angle (d —argr) asa function of frequency, resulting from varia.

tions ofargr with frequency near~~, is shown in Fig. 2 for a cavity

coupling coefficient (B) smaller than unity. The frequencies ul, ~~,

and co” denoted in Fig. 2 m-e given by

[

T - +01

J
., =.0 1+~—

2Q~
(5)

Fig 2. Changes of the angle aversus frequency for@=,#,O.
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J= +-;1(!==)”2] (6)

co= @+;!& f)l’2]. (7)

Thusthes econdharmonics ignaldescribedby (4) ismaximumat. til,

which in practice is slightly different from the resonant frequency,

and drops tozerooutside the resonant cavity bandwidth. This signal

is shown in Fig. 3 after detection for typical values of T(uo), Q~, 6, r,

and a typical mixer-detector circuit. This signal may be utilized for

the control of a search oscillator. This oscillator provides a swept

voltage signal to the voltage-controlled electrode of the microwave

oscillators long as there is no signal at its control terminals. If the

second harmonic signal appears, then it should switch off the search

oscillator, thus permitting operation analogous to a microwave fre-

quency synchronizer. By these means, the microwave oscillator

frequency is shifted close enough to the cavity resonant frequency

that it liesiu the band of frequency locking.

This technique was checked for an X-band reflex klystron oscil-

lator, and satisfactory performance was achieved in the band ccn-re-

sponding to about 80 percent of the klystron mode of operation

bandwidth.
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The utilization of the second harmonic of the amplitude-modu-

lated signal for the control of the search oscillator enables shifting the

microwave oscillator frequency close enough to the cavity resonant

frequency forthe automatic frequency Iocking circuit to start the

control. This makes impossible toincrease the range of thickness and

permittivity of the dielectric films measured by the system.
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Anomalous Convergence of Iterative Methods

in the Numerical Solutionof

Electromagnetic Problems

M. ALBANIANDP. BERNARDI

Abstract—Iterative methods applied to eigenvalue equations

can lead to anomalous convergence. It is shown that this can occur

when some of the eigenvalues are complex and the corresponding

eigenvectors satisfy a particular condition. A method of distinguish-

ing between anomalous and effective convergence is indicated.

Many electromagnetic problems can be solved by the finite differ-

ence technique, which leads to a system of difference equations whose

coefficient matrix A is generally real. The approximate solution of

the continuous problem is then obtained by solving the matrix eigen-

vahre problem (A —H)x=O. If the matrixd is very large it is neces-

sary to use an iterative method for the computation of the eigen-

values.

A useful procedure [I]that allows thecomputation ofall the real

eigenvalues of A is to introduce the semidefinite positive matrix

C(X)= (A–hZ)~(A -M) (1)

and then to compute an eigenvalue kin the following manner.

1) Equation C(AfOJ)x=O (k@j being aguessat k) issolved by an

iterative method, e.g., successive displacements, starting with an

arbitrary real vector x@).

2) Preestimate k(lJiscomputed from the Rayleigh quotient and

thevahre obtained replaces ~(”)in C,

3) An alternation between steps 1 and2 is carried out until X(;)

seems to have converged to k.

The described procedure generally works satisfactorily; however,

we verified that anomalous convergence can occur when the matrix

A is unsymmetric. It is the purpose of this short paper to discuss these

anomalies and to show how to identify them.

Let us refer to a very simple example. Consider the 5 X.5 circulant

matrix [2]whosefirst row is

alj= [0, 1,2,3,6] (2)

and use it as a test matrix.

By using as iterative method in step 1 the method of successive

displacements and continuing the procedure for calculating huntil
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X(O and kf~+o differ by less than 0.1 percent, we obtained the following

results.

(Convergence Value)
~(o) ~(o) Aeon.

—

–3 1,2,3,4,5 –4.115
3 1,2, 1,2,1 –4.115
5 1,2, 1,2,1 12

It is easy to verify that only bonr = 12 is an eigenvalue of (2),

while k.omv = –4. 115 is an anomalous convergence value. However,

it can be noticed that the value —4.115 corresponds to the real part

of the complex eigenvalues of A. The behavior shown in the example

has also been found in solving other real matrices obtained from

electromagnetic problems using the finite difference technique. The

anomalous convergence values are always found to be the real part

of complex eigenvalues. The above result must, therefore, be borne

in mind in the case of problems that are not schematized by a sym-

metric matrix, since, as complex eigenvalues may exist, there is the

possibility that the iterative procedure may give rise to a convergence

towards a quantity that does not correspond to an actual eigenvahre.

We will, therefore, examine in detail the whole procedure for studying

in which cases an anomalous convergence may occur.

Let S (C, A(”)) be the error-reducing (or iteration) matrix [2] rela-

tive to the iterative method adopted to solve C(X)Z = O, and let w

and Ii be the eigenvalues and the corresponding eigenvectors of &

Both pi and Ii are in general complex. Supposing that the matrix A

is not defective [3], the initial real vector x(o) can be expressed as

.
X(’J) = ~ (a,Ii, + @{I;f) (3)

i=l

where w and O; are real constants and Ii= Ii. +jIii. Performing s

iterations we obtain

(4)

where a generic eigenvalue and the corresponding eigenvector are

related by

Ssl, = I p I’(1, cos sO – 1, sin sO)

d381~ = I ,u /a(l’j COS S6 + 1, sin .%’) (5)

with ~ = I M[ e~~.

Let w be the eigenvalue having the greatest absolute value. Let

us distinguish the two cases

1) M real (Zl, = ll; Zlj = 0).

Equation (4) fors increasing tends to

x(’) = alpl”ll.

Therefore, As) tends to assume the form of 11 and the Rayleigh

quotient tends to become constant. Moreover, the Rayleigh quotient

gives a value h(~+l) of k that is closer than ~(~) to a true eigenvalue.

2) PI complex.

Since the matrix S is real, ~~ =gl” and 1,=1,”. Taking account

of (5), it is found that, as s increases, x(”) tends to

~(g) = (al + aJ&gl~~ + ((31 — @J.&sI1j = ~(S)Z1r + b(.$)~1~ (6)

where a(s) and b(s) are oscillating functions of s. Consequent y, x+)

oscillates in sign as s varies. However, let us consider the Rayleigh

quotient

#o~A@) = (allr~ + bll~~)A (al~, + ZI1,~)

,@2’#(8) (al~# + bZ,j~) (a~l, + bI,,~ “

The quotient, which will generally vary with a and b (i.e., with s),


