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Fig. 3. Microstrip transmission-ltne effective dielectric constant as a function

of the w/h ratio.

expression (% ln 4) /» to account for the edge correction for all values
of w/h larger than unity, his reasoning being that the actual edge
correction approaches this limiting value very rapidly as w/k ap-
proaches and exceeds unity. While attempting to define a crossover
point between the narrow- and wide-line cases, the present authors
considered the possibility that the edge-correction term for the wide-
line case should be a function of the w/k ratio. It was empirically
determined that if the edge-correction term in (2) was described in
the same fashion as the open-end correction developed in this short
paper (1), then a definite crossover point existed between the narrow-
and wide-line approximations and the range of validity of the wide-
line approximation was extended. Values of e given by substituting
(1) into (2) are plotted in Fig. 3 (curve c¢). It is seen that curve ¢
closely approximates the narrow-line curve (curve b) for all values of
w/h greater than 1.0 and less than about 3.5 and is asymptotic to
curve ¢ for w/h>3.5. In order to test the validity of curve ¢, e was
measured using a resonant-ring technique for various w/k ratios
[6], [7]- The measured results are shown in Fig. 3 and good agree-
ment is exhibited with the modified expression for w/k>1 (and with
curve b for w/h <3.5).

1I11. ConcLUsIONS

An empirically derived relation is reported which characterizes
the open-end effects in microstrip transmission lines on alumina sub-
strates. It is shown that the same empirical equation may be used to
describe the edge-correction term in Wheeler’s general expression for
the characteristic impedance of a wide line. It is demonstrated that
with this modification, the wide-line approximation is valid over a
much larger range of w/k values and that a distinct crossover point
(w/h=1) exists between the narrow-line and wide-line approxima-
tions.
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Extension of Digital Automatic Method for
Measuring the Permittivity of
Thin Dielectric Films

M. A. RZEPECKA axp M. A. K. HAMID

Abstract—The permittivity of thin dielectric films can be mea-
sured with good accuracy by employing a method recently reported
by the authors, whereby the microwave oscillator frequency is auto-
matically locked to the resonant frequency of the test cavity perturbed
by the sample, thus leading to a digital readout of the frequency.
However, the method is satisfactory only when the frequency shift
caused by the presence of the test sample does not exceed the fre-
quency lock-in bandwidth, By employing a search oscillator, controlled
by the second harmonic of the modulation signal provided for the
frequency locking, this limitation is removed, thus extending the
capability of the method to thicker films and/or larger permittivitiess

INTRODUCTION

The permittivity of thin dielectric films can be measured with
considerable accuracy by a digital automatic method recently re-
ported by the authors [1]. The method utilizes the cavity perturba-
tion technique in which the frequency of the microwave oscillator is
locked to the resonant frequency of the test cavity in the absence and
presence of the test film. These frequencies can be measured very
accurately by a digital frequency counter. However, the ranges of
film thickness and material permittivity in which the method can be
employed are limited since they are determined by the lock-in band-
width of the frequency control loop. This bandwidth is directly re-
lated tothe Q factor of the test cavity, which in turn should be large
enough to assure a high frequency-stabilization factor, thus permit-
ting only a small deviation of the oscillator frequency from the reso-
nant frequency of the cavity.

In many applications of this measurement method, as for instance
in the continuous monitoring of moisture content of sheet materials,
the range of the shift in resonance frequency exceeds the lock-in band-
width of the control loop. A method for extending the measuring
range is described in this short paper.

PrINCIPLE OF OPERATION

The complete circuit is shown in Fig. 1 where the additional parts
over the circuit previously reported in [1] are shown by dashed lines.
The principle of operation of the locking system is also described in
[1]. At the output of the linear homodyne detector there exists a
signal at the modulation frequency which is used for the frequency
lock, as well as a signal at the second harmonic frequency. Basic signal
analysis [1]-[3] shows that the second harmonic signal is described
by the equation

EQ2wn) = —Ey| T(w) | sine g —q(;%l) Gyrtro (1)
where
a=0—argT
T(w
[T | = ———‘%:')_:0 3 )
1+ 402 (—*—
wo
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Fig. 1. Block diagram of the resonant frequency shift measurement setup with a
search oscillator.
TABLE 1
q 1 2 3 4 5
m? m?
G, 2 0 mt/2 3m2/2 m? (3 + 7 Sm2 {14 0
©—w
arg I' = arctan (ZQL e 3)
wo
and
Ese amplitude of subcarrier signal,
T(wo) transmission coefficient of cavity at resonance,
o cavity resonant frequency in radians,
w microwave oscillator frequency in radians,
QL loaded Q factor of cavity,
i =180—¢; ¢ is the angle between carrier and subcarrier
signals,
r = Exc/ Ec:
E. amplitude of carrier signal,
w—
qugcos [0 — arctan 2Qz, ( -0) 1 2
p/ = “ S
d [0 — arctan 2Qy, (m @>]
wo
Py(x) Legendre polynomials of order ¢ and argument x,
Gy»  special functions of modulation index # tabulated in [3]

and listed for the first five terms in Table 1.

Since in practice »<0.1, all the terms in the sum beyond the first may
be neglected. Thus (1) reduces to
Ee .

EQwy) = —r T [ T(w) | m?sin? . )
In order to assure frequency lock by the signal at the first harmonic,
the angle ¢ between the carrier and subcarrier signals must have
specific values which depend on # and which are listed in [1]. The
proper angle for the frequency lock is denoted by &o. The change in
the angle (9 —arg I') as a function of frequency, resulting from varia-
tions of arg T with frequency near wo, is shown in Fig. 2 for a cavity
coupling coefficient (8) smaller than unity. The frequencies w1, o,
and «'’ denoted in Fig. 2 are given by

]
14— 5)
+ 0n (
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!
' = wy l—l - — (___) :] (6)
20r \1+38
1 1—pB\12
"
w'' = wy ,:1 + — <——~) :l (@)
20; \1+4-8

Thus the second harmonic signal described by (4) is maximum at ws,
which in practice is slightly different from the resonant frequency,
and drops to zero outside the resonant cavity bandwidth, This signal
is shown in Fig. 3 after detection for typical values of T'(wo), Qx, 8, 7,
and a typical mixer-detector circuit. This signal may be utilized for
the control of a search oscillator. This oscillator provides a swept
voltage signal to the voltage-controlled electrode of the microwave
oscillator as long as there is no signal at its control terminals. If the
second harmonic signal appears, then it should switch off the search
oscillator, thus permitting operation analogous to a microwave fre-
quency synchronizer. By these means, the microwave oscillator
frequency is shifted close enough to the cavity resonant frequency
that it lies in the band of frequency locking.

This technique was checked for an X-band reflex klystron oscil-
lator, and satisfactory performance was achieved in the band corre-
sponding to about 80 percent of the klystron mode of operation
bandwidth.
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CoNCLUSIONS

The utilization of the second harmonic of the amplitude-modu-
lated signal for the control of the search oscillator enables shifting the
microwave oscillator frequency close enough to the cavity resonant
frequency for the automatic frequency locking circuit to start the
control. This makes it possible to increase the range of thickness and
permittivity of the dielectric films measured by the system.
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Anomalous Convergence of Iterative Methods
in the Numerical Solution of
Electromagnetic Problems

M. ALBANI anxp P. BERNARDI

Abstract—Iterative methods applied to eigenvalue equations
can lead to anomalous convergence. It is shown that this can occur
when some of the eigenvalues are complex and the corresponding
eigenvectors satisfy a particular condition. A method of distinguish~
ing between anomalous and effective convergence is indicated.

Many electromagnetic problems can be solved by the finite differ-
ence technique, which leads to a system of difference equations whose
coefficient matrix A is generally real. The approximate solution of
the continuous problem is then obtained by solving the matrix eigen-
value problem (4 —AI)x=0. If the matrix 4 is very large it is neces-
saty to use an iterative method for the computation of the eigen-
values.

A useful procedure [1] that allows the computation of all the real
eigenvalues of 4 is to introduce the semidefinite positive matrix

C\) = (4 — AT — ) ¢))

and then to compute an eigenvalue A in the following manner.

1) Equation CQM®)x =0 (A being a guess at A) is solved by an
iterative method, e.g., successive displacements, starting with an
arbitrary real vector x(®.

2) A reestimate A? is computed from the Rayleigh quotient and
the value obtained replaces A©@ in C.

3) An alternation between steps 1 and 2 is carried out until A
seems to have converged to A.

The described procedure generally works satisfactorily; however,
we verified that anomalous convergences can occur when the matrix
A is unsymmetric. It is the purpose of this short paper to discuss these
anomalies and to show how to identify them.

Let us refer to a very simple example. Consider the 5X 35 circulant
matrix [2] whose first row is

a1y = [0: 1: 27 3: 6] (2)

and use it as a test matrix.
By using as iterative method in step 1 the method of successive
displacements and continuing the procedure for calculating A until
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A and AG+D differ by less than 0.1 percent, we obtained the following
results.

(Convergence Value)

A x® Aeonv

-3 1,2,3,4,5 —4.115
3 1,2,1,2,1 —4.115
5 1,2,1,2,1 12

It is easy to verify that only Acoay =12 is an eigenvalue of (2),
while Acony = —4.115 is an anomalous convergence value. However,
it can be noticed that the value —4.115 corresponds to the real part
of the complex eigenvalues of 4. The behavior shown in the example
has also been found in solving other real matrices obtained from
electromagnetic problems using the finite difference technique. The
anomalous convergence values are always found to be the real part
of complex eigenvalues. The above result must, therefore, be borne
in mind in the case of problems that are not schematized by a sym-
metric matrix, since, as complex eigenvalues may exist, there is the
possibility that the iterative procedure may give rise to a convergence
towards a quantity that does not correspond to an actual eigenvalue.
We will, therefore, examine in detail the whole procedure for studying
in which cases an anomalous convergence may occur.

Let £(C, A®) be the error-reducing (or iteration) matrix [2] rela-
tive to the iterative method adopted to solve C(\)x =0, and let u;
and I; be the eigenvalues and the corresponding eigenvectors of £.
Both y; and I; are in general complex. Supposing that the matrix 4
is not defective [3], the initial real vector x® can be expressed as

0 = i (atlir + ﬂiIif) (3)
=1

where a; and B: are real constants and I;=1I;,+jI;;. Performing s
iterations we obtain

2@ = Z (QzuBinr + ﬂwes]li) (4)
fa=l

where a generic eigenvalue and the corresponding eigenvector are
related by

£,
£31,~ =

[,u |-'(I, cos 58 — I, sin s6)
| w]*(Z; cos s6 + I. sin s6) (5
with u=]ule.

Let w1 be the eigenvalue having the greatest absolute value. Let
us distinguish the two cases

1) urreal (Iy, = Iy; I;; = 0).
Equation (4) for s increasing tends to
) = quu,ly.
Therefore, x® tends to assume the form of I; and the Rayleigh

quotient tends to become constant. Moreover, the Rayleigh quotient
gives a value N0 of X\ that is closer than A® to a true eigenvalue.

2) u1 complex.

Since the matrix £ is real, pa=m™* and I, =I;* Taking account
of (5), it is found that, as s increases, x® tends to

) = (a1 + a)Lelr + B — B) LTy = a(s) 1 + 6() Iy (6)

where a(s) and b(s) are oscillating functions of s. Consequently, x
oscillates in sign as s varies. However, let us consider the Rayleigh
quotient
x@T 450 _ (dIIrT + b[le)A (allr + b]1j)
x®OTx® (alu® + bI1T) (alir + bIy)

The quotient, which will generally vary with ¢ and & (i.e., with s),



